8853 measured reflections

 $R_{\rm int} = 0.021$

2849 independent reflections

2423 reflections with $I > 2\sigma(I)$

a mixture of

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Methyl-N'-(2-thienylcarboxyl)butyrohydrazide

Guo-Xiang Liu, Wen-Shi Wu,* Hai-Ping Li and Guo-Dong Yang

College of Materials Science and Engineering, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China Correspondence e-mail: wws@hqu.edu.cn

Received 16 May 2007; accepted 11 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.123; data-to-parameter ratio = 14.7.

In the crystal structure of the title compound. $C_{10}H_{14}N_2O_2S \cdot H_2O_3$, there are intermolecular $O-H \cdot \cdot \cdot O$ and N-H···O hydrogen bonds between the hydrazide O and N atoms and the water H atoms. These help to stabilize the structure and link the molecules to form a two-dimensional grid.

Related literature

For related literature, see: Wu et al. (2004); Xiao & Wang (2004).

Experimental

Crystal data

$C_{10}H_{14}N_2O_2S \cdot H_2O$
$M_r = 244.31$
Monoclinic, P21/c
a = 6.5648 (5) Å
b = 7.3451 (7) Å
c = 25.956 (2) Å
$\beta = 96.387 \ (4)^{\circ}$

 $V = 1243.81 (18) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 293 (2) K $0.60 \times 0.30 \times 0.10 \; \mathrm{mm}$

Data collection

```
Rigaku Mercury70 diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku, 2000)
  T_{\min} = 0.801, \ T_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture o
$wR(F^2) = 0.123$	independent and constrained
S = 1.00	refinement
2849 reflections	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O3^{i}$ $N2 - H2B \cdots O3^{ii}$ $D3 - H3 \cdots O1$ $D3 - H4 \cdots O2^{iii}$	0.86 0.86 0.80 (3) 0.90 (3)	2.08 2.08 1.95 (3) 1.83 (3)	2.8173 (18) 2.9147 (18) 2.7416 (18) 2.7355 (17)	143 162 171 (2) 178 (2)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the National Science Foundation of Fujian Province, China (grant Nos. 2006J164 and 2003F006) and the National Science Foundation of the Overseas Chinese Affairs Office of the State Council, China (grant No. 05QZR01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2059).

References

Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wu, W.-S., Feng, Y.-L., Lan, X.-R. & Huang, T.-T. (2004). Chin. J. Appl. Chem. 21, 135-139.
- Xiao, T. M. & Wang, X. H. (2004). J. Inner Mongolia Nationalities, 19, 659-660.

supplementary materials

Acta Cryst. (2007). E63, o3225 [doi:10.1107/S1600536807028498]

3-Methyl-N'-(2-thienylcarboxyl)butyrohydrazide

G.-X. Liu, W.-S. Wu, H.-P. Li and G.-D. Yang

Comment

A number of thiophene derivatives have been widely investigated in chemistry due to their wide range of medicinal applications. (Xiao *et al.*, 2004).

The molecular structure of the compound is illustrated in Figure 1 and selected bond distances and angles are given in Table 1. The bond distances are consistent with conjugation in the molecule.

The atoms C(1) C(2) C(3) C(4) S(1) C(5) O(1) lie in a plane with a r.m.s. deviation from planarity of 0.0340 Å. The atoms of N(1) N(2) C(6) O(2) are also in a plane, with 0.0124 Å) of r.m.s deviation and forms an angle of 78.95 (6)° to the previous plane.

N—H…O, O—H…O intermolecular hydrogen bonds in the compound lead to a two-dimensional grid structure (shown in Figure 2) and detailed in Table 2. Atom O3 is involved as a acceptor in four intermolecular hydrogen bonds (Figure 2).

Experimental

The compound was synthesized according to the method of Wu *et al.* (2004). The white powder of N,*N*-thienylhydrazide (1 mmol) and the Isovaleric anhydride (1 mmol) were dissolved in ethanol, stirred in an ice bath for 15 min. Transparent colourless crystals of (I) grew from the mother liquor by slow evaporation at room temperature after one week.

Refinement

The C-bound H atoms were included in the riding model approximation with C-H = 0.93 Å. all these H atoms included in the final refinement. The positions of the water O-bound H atoms were located from a difference Fourier map and fixed.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme, with 30% displacement ellipsoids.

Fig. 2. Packing diagram of (I), showing hydrogen bonds as dashed lines.

3-Methyl-N'-(2-thienylcarboxyl)butyrohydrazide

Crystal data

C₁₀H₁₄N₂O₂S·H₂O $M_r = 244.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.5648 (5) Å b = 7.3451 (7) Å c = 25.956 (2) Å $\beta = 96.387$ (4)° V = 1243.81 (18) Å³ Z = 4

Data collection

Rigaku Mercury70 (2x2 bin mode) diffractometer	2849 independent reflections
Radiation source: Sealed Tube	2423 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
CCD_Profile_fitting scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)	$h = -8 \rightarrow 8$
$T_{\min} = 0.801, T_{\max} = 1.000$	$k = -9 \rightarrow 9$
8853 measured reflections	$l = -33 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0607P)^2 + 0.5306P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.006$
2849 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
194 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

 $F_{000} = 520$

 $D_{\rm x} = 1.305 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 2785 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.8 - 27.5^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$

T = 293 (2) K

Prism, white

 $0.60 \times 0.30 \times 0.10 \text{ mm}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.81975 (8)	0.28733 (9)	0.210206 (18)	0.0589 (2)
N1	0.8807 (2)	0.15490 (19)	0.06560 (5)	0.0356 (3)
H1A	1.0116	0.1423	0.0682	0.043*
N2	0.7661 (2)	0.14048 (19)	0.01749 (5)	0.0358 (3)
H2B	0.7293	0.0353	0.0052	0.043*
01	0.59982 (18)	0.1910 (2)	0.10851 (5)	0.0484 (3)
O2	0.7541 (2)	0.44417 (16)	0.00794 (5)	0.0480 (3)
C1	0.9259 (2)	0.2181 (2)	0.15619 (6)	0.0351 (3)
C2	1.1373 (3)	0.2035 (2)	0.16588 (6)	0.0409 (4)
H2A	1.2229	0.1678	0.1415	0.049*
C3	1.2057 (3)	0.2505 (3)	0.21810 (8)	0.0549 (5)
C4	1.0527 (4)	0.2977 (3)	0.24551 (8)	0.0613 (6)
C5	0.7868 (2)	0.1886 (2)	0.10829 (6)	0.0331 (3)
C6	0.7127 (2)	0.2931 (2)	-0.01001 (6)	0.0348 (3)
C7	0.5979 (3)	0.2597 (3)	-0.06275 (7)	0.0429 (4)
C8	0.6887 (3)	0.3566 (3)	-0.10687 (7)	0.0471 (4)
O3	0.27168 (19)	0.21322 (16)	0.03360 (5)	0.0376 (3)
C9	0.9125 (4)	0.3120 (4)	-0.10852 (10)	0.0646 (6)
H9A	0.960 (5)	0.370 (4)	-0.1390 (12)	0.095 (9)*
H9B	0.924 (6)	0.192 (5)	-0.1161 (14)	0.114*
H9C	1.004 (5)	0.348 (5)	-0.0758 (14)	0.114*
C10	0.5614 (5)	0.3099 (4)	-0.15790 (9)	0.0717 (7)
H3A	1.349 (4)	0.253 (3)	0.2300 (10)	0.064 (7)*
H4A	1.060 (4)	0.340 (4)	0.2795 (11)	0.082 (8)*
H7A	0.591 (3)	0.127 (4)	-0.0702 (9)	0.065 (7)*
H7B	0.467 (5)	0.303 (4)	-0.0612 (11)	0.085 (9)*
H8A	0.680 (3)	0.493 (3)	-0.1014 (9)	0.068 (7)*
H10A	0.566 (4)	0.174 (4)	-0.1630 (11)	0.081*
H10B	0.426 (5)	0.344 (4)	-0.1543 (12)	0.093 (10)*
H10C	0.615 (5)	0.375 (4)	-0.1879 (12)	0.096 (9)*
H3	0.375 (4)	0.210 (3)	0.0532 (10)	0.054 (7)*
H4	0.261 (4)	0.327 (3)	0.0205 (10)	0.064 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0568 (3)	0.0872 (4)	0.0332 (3)	0.0112 (3)	0.0069 (2)	-0.0078 (2)
N1	0.0335 (6)	0.0469 (7)	0.0256 (6)	0.0043 (6)	-0.0004 (5)	0.0002 (6)
N2	0.0428 (7)	0.0371 (7)	0.0262 (6)	-0.0009 (6)	-0.0025 (5)	-0.0018 (5)
01	0.0340 (6)	0.0745 (9)	0.0364 (6)	0.0005 (6)	0.0022 (5)	-0.0027 (6)
O2	0.0644 (8)	0.0380 (6)	0.0392 (6)	-0.0027 (6)	-0.0043 (6)	0.0000 (5)
C1	0.0401 (8)	0.0401 (8)	0.0248 (7)	0.0004 (6)	0.0027 (6)	0.0027 (6)
C2	0.0392 (9)	0.0543 (10)	0.0282 (8)	-0.0023 (7)	-0.0002 (6)	0.0034 (7)
C3	0.0506 (11)	0.0732 (13)	0.0378 (10)	-0.0087 (10)	-0.0098 (8)	0.0061 (9)
C4	0.0738 (15)	0.0779 (15)	0.0300 (9)	-0.0049 (11)	-0.0045 (9)	-0.0052 (9)
C5	0.0347 (8)	0.0351 (7)	0.0289 (7)	0.0010 (6)	0.0017 (6)	0.0025 (6)
C6	0.0366 (8)	0.0415 (8)	0.0263 (7)	-0.0013 (6)	0.0031 (6)	0.0008 (6)
C7	0.0453 (10)	0.0540 (10)	0.0277 (8)	-0.0046 (8)	-0.0028 (7)	0.0016 (7)
C8	0.0697 (12)	0.0411 (9)	0.0301 (8)	0.0038 (8)	0.0039 (8)	0.0010 (7)
O3	0.0354 (6)	0.0389 (6)	0.0378 (6)	-0.0016 (5)	0.0009 (5)	-0.0010 (5)
C9	0.0687 (14)	0.0740 (15)	0.0538 (13)	-0.0077 (12)	0.0191 (11)	-0.0054 (12)
C10	0.093 (2)	0.0873 (18)	0.0314 (10)	0.0056 (15)	-0.0071 (11)	0.0036 (11)

Geometric parameters (Å, °)

S1—C4	1.695 (2)	C6—C7	1.507 (2)
S1—C1	1.7110 (16)	С7—С8	1.525 (3)
N1—C5	1.349 (2)	С7—Н7А	0.99 (3)
N1—N2	1.3883 (17)	С7—Н7В	0.92 (3)
N1—H1A	0.8600	C8—C9	1.511 (3)
N2—C6	1.354 (2)	C8—C10	1.524 (3)
N2—H2B	0.8600	C8—H8A	1.02 (3)
O1—C5	1.228 (2)	O3—H3	0.80 (3)
O2—C6	1.222 (2)	O3—H4	0.90 (3)
C1—C2	1.387 (2)	С9—Н9А	0.98 (3)
C1—C5	1.474 (2)	С9—Н9В	0.91 (3)
C2—C3	1.422 (2)	С9—Н9С	1.02 (4)
C2—H2A	0.9300	C10—H10A	1.00 (3)
C3—C4	1.339 (3)	C10—H10B	0.94 (3)
С3—НЗА	0.95 (3)	C10—H10C	1.01 (3)
C4—H4A	0.93 (3)		
C4—S1—C1	91.77 (10)	C6—C7—C8	114.11 (15)
C5—N1—N2	120.11 (13)	С6—С7—Н7А	110.2 (13)
C5—N1—H1A	119.9	С8—С7—Н7А	109.1 (14)
N2—N1—H1A	119.9	С6—С7—Н7В	106.1 (18)
C6—N2—N1	119.57 (13)	С8—С7—Н7В	108.3 (17)
C6—N2—H2B	120.2	H7A—C7—H7B	109 (2)
N1—N2—H2B	120.2	C9—C8—C10	111.6 (2)
C2—C1—C5	130.92 (15)	C9—C8—C7	112.47 (18)
C2—C1—S1	111.41 (12)	C10—C8—C7	108.98 (19)

C5—C1—S1	117.65 (12)	С9—С8—Н8А	106.7 (13)
C1—C2—C3	110.95 (16)	C10—C8—H8A	108.1 (13)
C1—C2—H2A	124.5	С7—С8—Н8А	108.9 (13)
C3—C2—H2A	124.5	Н3—О3—Н4	107 (2)
C4—C3—C2	113.15 (18)	С8—С9—Н9А	109.1 (18)
С4—С3—НЗА	126.2 (15)	С8—С9—Н9В	109 (2)
С2—С3—НЗА	120.5 (15)	Н9А—С9—Н9В	102 (3)
C3—C4—S1	112.71 (16)	С8—С9—Н9С	114 (2)
C3—C4—H4A	128.9 (17)	Н9А—С9—Н9С	110 (3)
S1—C4—H4A	118.2 (17)	Н9В—С9—Н9С	112 (3)
O1—C5—N1	123.64 (15)	C8—C10—H10A	108.5 (16)
O1—C5—C1	121.31 (15)	C8—C10—H10B	106.6 (19)
N1—C5—C1	115.02 (13)	H10A-C10-H10B	109 (2)
O2—C6—N2	121.14 (14)	C8—C10—H10C	111.1 (17)
O2—C6—C7	124.16 (15)	H10A-C10-H10C	110 (2)
N2	114.69 (14)	H10B-C10-H10C	111 (3)
C5—N1—N2—C6	83.78 (19)	C2—C1—C5—O1	172.76 (17)
C4—S1—C1—C2	0.11 (15)	S1—C1—C5—O1	-9.0 (2)
C4—S1—C1—C5	-178.45 (14)	C2-C1-C5-N1	-5.6 (3)
C5—C1—C2—C3	178.30 (17)	S1—C1—C5—N1	172.61 (12)
S1—C1—C2—C3	0.0 (2)	N1—N2—C6—O2	-4.0 (2)
C1—C2—C3—C4	-0.1 (3)	N1—N2—C6—C7	177.00 (14)
C2—C3—C4—S1	0.2 (3)	O2—C6—C7—C8	52.8 (2)
C1—S1—C4—C3	-0.2 (2)	N2	-128.14 (17)
N2-N1-C5-O1	7.2 (2)	C6—C7—C8—C9	55.0 (2)
N2—N1—C5—C1	-174.48 (13)	C6—C7—C8—C10	179.19 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1A···O3 ⁱ	0.86	2.08	2.8173 (18)	143	
N2—H2B···O3 ⁱⁱ	0.86	2.08	2.9147 (18)	162	
O3—H3…O1	0.80 (3)	1.95 (3)	2.7416 (18)	171 (2)	
O3—H4···O2 ⁱⁱⁱ	0.90 (3)	1.83 (3)	2.7355 (17)	178 (2)	
Symmetry address (i) $u + 1$ $u = r$ (ii) $u + 1$ $u = r$ (iii) $u + 1$ $u + 1$					

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, –*y*, –*z*; (iii) –*x*+1, –*y*+1, –*z*.

